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Abstract

The present work consists in the development of a three-dimensional model of heat diffusion in orthotropic media, based on
Fourier transforms, and taking into account the extent of the source. This model has been applied, together with a Gauss–Newton
estimation procedure, to identify the components of the conductivity tensor of a steel bar under uniaxial loading. Few percent var
the conductivity components have been observed for applied stresses remaining in the elastic domain.
 2004 Elsevier SAS. All rights reserved.
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Most of the existing heat diffusion models have be
developed under homogeneous, isotropic conditions. How
ever, several applications require to take into account a
sible anisotropy of the thermophysical properties. Onl
few works (Degiovanni [1], Balageas [2], Pujola [3], Am
zouz [4]) considering the anisotropy of the material h
been realised up today, and they often consider a punctu
uniform source (see Özisik [5] and references cited ther
but also Fournier et al. [6]). On the other hand, several wo
deal with the anisotropy of the thermal properties in comp
ite materials (Pan [7], Hadjov [8], Jezowski [9]), in sing
crystals (Smontara [10], Gusakov [11], between others
in polymer films (Piraux [12], Newman [13]) but the relatio
between physical properties and stress in common solid
been rarely studied (one can quote, for example, Davi
al. [14]).

The aim of the present study is to propose a model
ing into account both orthotropy of the thermal conduc
ity tensor and extent of the modulated source. This mo
based on numerical spatial Fourier transforms, takes
vantage of the increase of the computers capabilities:
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plitude and phase maps of the response of an orthotr
medium, submitted to a modulated (non-uniform but also
non-punctual) stimulation can be obtained in only a f
minutes.

This model has been validatedvia a comparison with a
well-known model in an axisymetrical situation. Then it h
been applied to the identification of the thermal conductiv
tensor components in the case of a steel sample, subm
to a uniaxial mechanical loading.

Various experimental devices have been found in the
erature: optical beam deflection (Monzyk [15]), thermore-
flectance (Li [16]), pulsed heating (Fournier [6]) are t
most used, and infrared thermography is sometimes ch
as measurement tool of the thermal signal (Burleigh [1
Photothermal thermography, under modulated laser st
lation at the front face of the sample, has been chose h
series of images are recorded by a focal plane array c
era, and experimental amplitude and phase maps are
tained thanks to a lock-in procedure. The three-dimensi
model, together with a Gauss–Newton parameter estima
procedure, allows the identification of the conductivity te
sor components parallel and perpendicular to the loading
nally, a Student’s test gives confidence intervals to the id
tified values.
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Nomenclature

C specific heat . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

E Young modulus . . . . . . . . . . . . . . . . . . . . . . . . GPa
I radiative flux. . . . . . . . . . . . . . . . . . . . . . . . W·m−2

h0, hL heat transfer coefficient at the front/rear
face . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2·K−1

kx, ky, kz thermal conductivity
components . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

L sample thickness . . . . . . . . . . . . . . . . . . . . . . . . . m
q volumic heat source . . . . . . . . . . . . . . . . . W·m−3

r0 laser beam radius at 1/e . . . . . . . . . . . . . . . . . . . m
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T ,Tamb, Tc temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . K
x, y space coordinates, in the plane of the sample

surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
z space coordinate, normal to the surface of the

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
u,v Fourier variables associated to the space

coordinatesx, y . . . . . . . . . . . . . . . . . . . . . . . . . . m
R reflection coefficient

Greek letters

α linear expansion coefficient . . . . . . . . . . . . . K−1

β absorption coefficient . . . . . . . . . . . . . . . . . . . m−1

ε strain tensor
ρi density of the layeri . . . . . . . . . . . . . . . . kg·m−3

ν Poisson coefficient
σ stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . MPa
ω pulsation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

Operators and notations

Xi quantity corresponding to the layeri

X′′ component of theX quantity parallel to the
surface

X⊥ component of theX quantity perpendicular to
the surface

X one-dimensional Fourier transform of the
functionX

X two-dimensional Fourier transform of the
functionX

∼ tensor superscript –̃ε, σ̃ : strain and stress tensors
{ }, [ ] vector and square matrices
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1. Experimental set-up

An infrared thermography equipment (CEDIP IRC 32
4LW) is used to measure the temperature rise at the f
surface of a steel bar, simultaneously submitted to a s
uniaxial mechanical loading and to the irradiation of
modulated laser beam. The optical device is presente
Fig. 1.

The infrared camera records series of images of the fr
face of the sample; then phaseand amplitude images of th
complex temperature pattern are obtained by a homem
numerical lock-in procedure [18,19]. In order to obta
the absolute phase shift between the optical stimula
and the thermal response, a reference signal is reco
simultaneously to the images by means of a photod

Fig. 1. Experimental set-up.
connected to a Data Acquisition Card synchronised with
camera (Fig. 2).

Fig. 2. Principle of the lock-in detection, with an optical reference obtai
via a photodiode.
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2. Three-dimensional thermal modelling

2.1. Development of the model

The present problem is to be solved in Cartesian
ordinates. Since the samples are covered with black p
(in order to homogenize and enhance their emissivity
multi-layer model is necessary; in order to remain as gen
as possible, we consider herep layers. If the conductivity
tensor components do not depend on the position but only o
the direction (orthotropic homogeneous medium), the h
equation in each layer can be written:

−kx
i

∂2Ti,t

∂x2 − k
y

i

∂2Ti,t

∂y2 − kz
i

∂2Ti,t

∂z2 + ρiCi

∂Ti,t

∂t

= qi(x, y, z, t) (1)

wherekx
i , k

y
i andkz

i are the conductivity components,ρi the
density,Ci the specific heat andTi,t the temperature of th
layeri, andqi the heat source in the layeri.

Under sinusoidal excitation, the time dependence of
source can be expressed as a complex exponential fun
so that:

qi(x, y, z, t) = qi(x, y, z)
(
1+ ejωt

)
(2)

where ω is the pulsation; the temperature can then
expressed as a sum of three terms:

Ti,t (x, y, z, t) = Ti,amb+ Ti,c(x, y, z) + Ti(x, y, z)ejωt (3)

where Ti,amb, Ti,c and Ti are, respectively, the ambie
temperature, the continuous temperature, and the the
amplitude of the layeri. qi(x, y, z) is the spatial profile o
the source, which can be separated in two components
first oneq ′′

i (x, y) parallel to the surface and the second o
q⊥
i (z) perpendicular (depth profile of the source):

qi(x, y, z) = q ′′
i (x, y)q⊥

i (z) (4)

Finally, the heat equation for the alternative component
be written as follows:

kx
i

∂2Ti

∂x2 + k
y

i

∂2Ti

∂y2 + kz
i

∂2Ti

∂z2 − jωρiCiTi

= −q ′′
i (x, y)q⊥

i (z) (5)

2.1.1. Fourier transforms in the plane parallel to the
surface

A first Fourier transform on thex direction, applied to the
heat equation as expressed before, leads to:

−kx
i 4π2u2Ti + k

y
i

∂2Ti

∂y2 + kz
i

∂2Ti

∂z2 − jωρiCiTi

= −q ′′
i (u, y)q⊥

i (z) (6)

whereX is the one-dimensional Fourier transform of t
function X, andu is the Fourier variable associated to t
space variablex.
,

l

Then, a Fourier transform on they direction, leads to:

−kx
i 4π2u2Ti − k

y
i 4π2v2Ti + kz

i

∂2Ti

∂z2 − jωρiCiTi

= −q ′′
i (u, v)q⊥

i (z) (7)

whereX is the two-dimensional Fourier transform of t
function X and v is the Fourier variable associated to t
space variabley.

Let

σ 2
i = kx

i

kz
i

4π2u2 + k
y

i

kz
i

4π2v2 + jω
ρiCi

kz
i

the heat conduction equation can be resumed as follows

∂2Ti(u, v, z)

∂z2
− σ 2

i Ti(u, v, z) = −q ′′
i (u, v)

kz
i

q⊥
i (z) (8)

and has to be solved for the remaining spatial variabz
(depth).

2.1.2. Resolution of the radiative transfer equation alon
the depth of the material

On the one hand, the general solutions of the assoc
homogeneous equation can be written as:

Ti(u, v, z) = Aie
−σiz + Bie

σiz (9)

On the other hand, a particular solution, similar to the sou
term, has to be found (cf. [20] and [21]). In the case o
semi-transparent non-scattering medium, one can cons
in each layeri, two radiative fluxesI+

i andI+
i , respectively

transmitted and reflected relatively toI0 (see Fig. 3). Thes
fluxes must check the equation of radiative transfer in
two particular directions of the system (towardsz and−z):

∂I+
i (z)

∂z
+ βiI

+
i (z) = 0 and

∂I−
i (z)

∂z
− βiI

−
i (z) = 0 (10)

The solutions of these equations can be written as:

I+
i (z) = Pie

−βiz and I−
i (z) = Mie

βiz (11)

Then, the radiative source can be expressed as
divergence of the net radiative flux:

Fig. 3. Radiative fluxes in each layer.
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q⊥
i (z) = − ∂

∂z

(
I+
i − I−

i

) = βi

(
Pie

−βiz + Mie
βiz

)
(12)

The coefficientsPi and Mi can be determinedvia the
radiative boundary conditions:



at z = 0: I+
1 (0) − R0I

−
1 (0) = I0(1− R0)

at z = l1: −R1I
+
1 (l1) + I−

1 (l1) − (1− R1)I
−
2 (l1) = 0

and −(1− R1)I
+
1 (l1) + I+

2 (l1) − R1I
−
2 (l1) = 0

...

at z = li : −r1I
+
i (li) + I−

i (li) − (1− Ri)I
−
i+1(li) = 0

and −(1− Ri)I
+
i (li) + I+

i+1(li) − RiI
−
i+1(li ) = 0

...

at z = L: −RpI+
p (L) + I−

p (L) = 0
(13)

Globally, (2p) boundary conditions are to be written, lea
ing to (2p) equations. As far as 2 coefficients are to be
termined for each layer, the resulting 2p coefficients can be
readily calculated.

The system is expressed in matrix form, with:

{
Pi

Mi

}
=




P1
M1
...

Pp

Mp




and {I } =




(1− R0)I0
0
...

0




(14)

so that:[X]{ Pi

Mi

} = {I }, and the coefficientsPi andMi are
completely determined after inversion of the matrix:{

Pi

Mi

}
= [X]−1{I } (15)

2.1.3. Resolution of the heat diffusion equation along th
depth of the material

Now, a particular solution of the equation can be writt

Ti(u, v, z) = Di(u, v)
[
Pie

−βiz + Mie
βiz

]
q ′′
i (u, v) (16)

so that the equation for the particular solution is:

β2
i Ti − σ 2

i Ti

= − βi

2kz
i

(
Pie

−βiz + Mie
βiz

)
q ′′
i (u, v) (17)

The factor 2 takes into account the mean value of
sinusoidal source.

Then, the value ofDi is obviously:

Di = − βi

2kz
i (β

2
i − σ 2

i )

Finally, the particular solution is:

Ti(u, v, z) = − βi

2kz
i (β

2
i − σ 2

i )

(
Pie

−βiz + Mie
βiz

)
q ′′
i (u, v)

= [−Eie
−βiz − Fie

βiz
]
q ′′(u, v) (18)
i
And the general depth-profile of temperature, expresse
the Fourier space, is:

Ti(u, v, z)

= (
Aie

−σiz + Bie
σiz − Eie

−βiz − Fie
βiz

)
q ′′
i (u, v) (19)

As far as thePi andMi coefficients have been determin
previously, theEi andFi are easily determined. Then, f
each layer, theAi and Bi are to be determinedvia the
conductive boundary conditions:

At the front face(z = 0):

−kz
1

∂T

∂z

∣∣∣
z=0

= −h0T (0)

At each interface ((p − 1) relations of this kind):

−kz
i

∂Ti

∂z

∣∣∣
z=li

= −kz
i+1

∂Ti+1

∂z

∣∣∣
z=li

And ((p − 1) relations of this kind):

Ti(li ) = Ti+1(li)

At the rear face (z = L):

−kz
p

∂T

∂z

∣∣∣
z=L

= hLT (L)

These boundary conditions lead to the following syste


(
kz

1
σ1 + h0

)
A1 − (

kz
1
σ1 − h0

)
B1

= (
h0 + kz

1
β1

)
E1 + (

h0 − kz
1
β1

)
F1

kz
i σiAie

−σi li − kz
i σiBie

σi li − kz
i+1

σi+1Ai+1e
−σi+1li

+ kz
i+1

σi+1Bi+1e
σi+1li

= kz
i βiEie

−βi li − kz
i βiFie

βi li − kz
i+1

βi+1Ei+1e
−βi+1li

+ kz
i+1

βi+1Fi+1e
βi+1li i ∈ {1,2, . . . , p − 1}

Aie
−σi li + Bie

σi li − Ai+1e
−σi+1li − Bi+1e

σi+1li

= Eie
−βi li + Fie

βi li − Eie
−βi+1li

− Fi+1e
βi+1li i ∈ {1,2, . . . , p − 1}(

kz
p
σp − hL

)
e−σpLAp − (

kz
p
σp + hL

)
eσpLBp

= (
kz

p
βp − hL

)
e−σpLEp − (

kz
p
βp + hL

)
eσpLFp

(20)

that can also be written in matrix form:

[M]
{

Ai

Bi

}
= {S} (21)

where [M] is the 2p × 2p matrix of the coefficients (in
terms ofki , βi , σi , u, v andh) and {S} is a vector matrix
issued from the source elements (functions ofEi andFi ),
and composed with the terms of the right members of
system.

The Ai and Bi coefficients are finally obtained b
inversion of the matrixM:{

Ai

Bi

}
= [M]−1{S} (22)
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2.1.4. Inverse Fourier transforms
In the case of a laser excitation, the radial profile of

source is gaussian and expressed as:

q ′′
i (x, y) = e

− (x2+y2)

r2
0 (23)

The double Fourier transform of this source is gaussian:

q ′′
i (u, v) = √

π r0e
−π2r2

0(u2+v2) (24)

And the complete expression of the complex bi-dimensio
Fourier transform of the temperature distribution is:

Ti(u, v, z)

= (
Aie

−σiz + Bie
σiz − Eie

−βiz − Fie
βiz

)
× √

π r0e
−π2r2

0(u2+v2) (25)

The last step consists in a double inverse Fourier transf
and finally the complex temperature distribution is:

Ti(x, y, z) = T F−1[(Aie
−σiz + Bie

σiz − Eie
−βiz − Fie

βiz
)

× √
π r0e

−π2r2
0(u2+v2)

]
(26)
2.2. Influence of the conductivity tensor orthotropy on th
amplitude and phase maps

The direct model has been preliminary validated by
comparison with an axisymetrical one [20], under identi
conditions. Then, its sensibility to the principal compone
of the conductivity tensor has been studied. Figs. 4 an
show that the differences between the maps are very sl
even if the variation of the conductivity tensor compone
is wide (50% in this case). On that account, an effici
estimation procedure is necessary to identify, from s
maps, the corresponding variations of the conducti
tensor components. However, it is possible to note that
phase maps are slightly more sensible to these varia
than the amplitude ones.

In the experimental work presented hereafter, ow
to calculation limitations, only two perpendicular pha
profiles across the laser beam, corresponding to the dire
parallel to the loading and to the direction perpendicula
it, have been considered.
Fig. 4. Influence of the orthotropic conductivity on the amplitude maps.

Fig. 5. Influence of the orthotropic conductivity on the phase maps.



1166 H. Pron, C. Bissieux / International Journal of Thermal Sciences 43 (2004) 1161–1169

ents

em
hase
into
ent.
the
tha
ow

sed
be

the
that
atial

een
r as

e th
sor

l, the

the
be

sor
e on
e
of

on of
the
nsor

he

s of
ons

cted

ent
allel

ion
rtial
the
ith

be
heat

per-
nts

low
der
Fig. 6. Phase relative sensitivity to the conductivity tensor compon
alongx andy axis.

The use of only two perpendicular profiles could se
to be a waste of data, since the whole amplitude and p
maps are available: only 400 measurements are taken
account though 40 000 are stored during the experim
However, one can note that, under these conditions,
gaussian profile of the laser beam is over-sampled so
the two profiles used contain enough information to all
the identification of the researched parameters.

Consequently, in case of a smaller source point (focu
laser beam, for example), the same procedure could
applied, but using the whole map in order to compensate
worse sampling of the source; this allows us to consider
the technique has not yet reached its limits in terms of sp
resolution.

The sensitivity of these phase profiles to thekx and ky

components of the thermal conductivity tensor has b
studied. The results are presented on Fig. 6: as fa
the sensitivity profiles are quite different according to the
considered direction, it seems to be possible to separat
influence of the two components of the conductivity ten
in the plane of the surface.

3. Application to stress-induced thermal anisotropy

3.1. Expected variations of the conductivity tensor
components

As far as the considered applied stresses are uniaxia
strain tensorε can be expressed as follows:

ε =



σ
E

0 0
0 −ν σ

E
0

0 0 −ν σ
E


 (27)

The “thermal” main directions being the same as
“mechanical” ones, the conductivity tensor can thus
written:

k̃ =

 k11 0 0

0 k22 0
0 0 k = k


 =


 kx 0 0

0 ky 0
0 0 k = k


 (28)
33 22 z y
t

e

The expected variations of the thermal conductivity ten
components can be estimated through their dependenc
the temperaturevia the Hooke–Duhamel law. Actually, th
variations of the thermophysical properties, like those
any observable property, can be expressed as a functi
the partial derivatives relative to each state variable of
system. The state variables involved here are the strain te
and the temperature.

For a tensorial quantity like thermal conductivity, t
calculation must be carried out for each component:

dkij =
(

∂kij

∂T

)
ε

dT +
∑
kl

(
∂kij

∂εkl

)
T , ε �=εkl

dεkl (29)

Starting from an isotropic state to another, the variation
the thermal conductivity components in the main directi
are:


kii =
(

∂kii

∂T

)
ε


T +
∑
kk

(
∂kii

∂εkk

)
T , ε �=εkk

εkk

=
[(

∂kii

∂T

)
ε

+
∑

k

(
∂kii

∂εkk

)
T , ε �=εkk

α

]

T (30)

In fact, the thermal expansion coefficientα becomes a
tensor; however its variations remain small and are negle
here.

However, the variation of a given conductivity compon
must be distinguished, either the strain component is par
or perpendicular to the conductivity component.

The measured variation of the conductivity as a funct
of the temperature is not sufficient to evaluate all the pa
derivatives, giving only the sum of the derivatives along
parallel and the two perpendicular directions together w
that relative to the temperature.(


k


T

)
experimental

= α

(
∂kii

∂εii

)
ε �=εii

+ 2α

(
∂kii

∂εkk

)
ε �=εkk

+
(

∂k

∂T

)
ε

(31)

Nevertheless, the last term seems particularly difficult to
measured. Indeed, the sample would be supposed to
without any volume expansion.

In the case of a uniaxial stress, and without any tem
ature influence, the variations of the principal compone
are:


k11 = σ

E

[(
∂k11

∂ε11

)
− ν

(
∂k11

∂ε22

)
− ν

(
∂k11

∂ε33

)]

= σ

E

[(
∂k11

∂ε11

)
− 2ν

(
∂k11

∂ε22

)]
(32)


k22 = 
k33 = σ

E

[(
∂k22

∂ε11

)
− ν

(
∂k22

∂ε22

)
− ν

(
∂k22

∂ε33

)]

= σ

E

[
(1− ν)

(
∂k22

∂ε11

)
− ν

(
∂k22

∂ε22

)]
(33)

Only conductivity components measurements could al
the evaluation of all the partial derivatives. However, in or
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to get at least an order of magnitude, the cross derivative
neglected here.

Then, for a carbon steel (E = 200 GPa,ν = 0.3, α =
12 × 10−6, 1/k(∂k/∂T ) = −10−3 K−1, see Rouby and
Blanchard [22]) under a 100 MPa uniaxial stress,
variations of the conductivity components would be:


k11

k11
= 1

αE

(
1

k


k


T

)
exp

≈ −4.2%

k being an arbitrary component, and


k22

k22
= −ν


k11

k11
≈ 1.3%

However crude, these estimations lead us to expect
percent variations of the principal conductivity compone
for stress levels remaining within the elastic domain. O
can also note that these estimations concern one kind of
and only one. Actually, the behaviour of a stainless s
is often very different from that of a carbon steel:∂k/∂T

is often positive for the first and negative for the seco
Not only the amplitude but also the sign of the conductiv
variations widely depend on the considered material.

Moreover, for a given kind of material, the purity h
a great influence. Finally, these estimations only allow
expecta priori the order of magnitude for the sensitivity
the experimental device.

A similar estimation would lead to one order of mag
tude lower relative variationsof the specific heat (Pron e
al. [23]); this estimation is coherent with those found in
literature (see, for example, Dunn et Sparrow [24], Brid
man [25]). Thus, specific heat is considered as consta
the present work.

3.2. Experimental results

The lock-in procedure gives amplitude and phase ima
as presented in Fig. 7(a) and (b). One can note that the n
is really low; this is due both to the high efficiency of o
home-made lock-in procedure and to the high performanc
of the FPA camera.

Two profiles across the laser beam (one paralle
the stress, the other along the perpendicular direction)
extracted from the experimental phase maps. Then,
identification of the parallel and perpendicular compone
of the conductivity tensork11 andk22 is realised by fitting
these profiles with the specially developed 3D heat diffus
model.

Fig. 8 shows how slight the differences between ph
profiles without and with loading are, observation tha
coherent with the expected variations.

Fig. 9 presents the variation of the parallel and perp
dicular components of the thermal conductivity for a st
bar under an uniaxial loading remaining in the elastic
main. The confidence intervals are evaluated by mean
a Student’s test (Beck and Arnold [26], Giri [27] or Ma
quardt [28]), with a risk of 10%.
l

(a)

(b)

Fig. 7. (a) Amplitude image across the laser beam; (b) Phase image a
the laser beam.

Fig. 8. Variation of a phase profile asa function of the applied stress (AIS
304).

Fig. 10 allows to state positively that our procedu
is efficient since there is a good agreement between
experimental phase profiles and the profiles rebuilt with
identified components of the thermal conductivity tens
Moreover, the procedure is able to adjust the profiles e
if they are affected by a slight irregularity of the laser sha
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Fig. 9. Evolution of the thermal conductivity components as a function
uniaxial applied stress.

Fig. 10. Adjustment of thex and y experimental phase profiles by th
theoretical 3D model.

4. Conclusions

Photothermal infrared thermography is applied here
estimate the variations of the thermal conductivity ten
components induced by a static uniaxial loading on a s
sample.

A specific three-dimensional model, based on numer
Fourier transforms, and taking into account both the str
induced orthotropy of the medium and the extent of
source has been developed. On the experimental poi
view, a specific device has been realised, allowing
application of a static uniaxial loading and, simultaneou
the irradiation of the surface by a modulated laser be
Series of images have beenrecorded thanks to a foca
plane array infrared camera, and experimental amplitude an
phase maps are obtained thanks to a home-made lo
procedure. After a validation of this modelvia a comparison
in an axisymetrical situation, with a well-known mod
it has been applied, togetherwith a parameter estimatio
procedure, to identify the conductivity tensor component
the directions parallel and perpendicular to the mechan
loading.

The obtained variations of the conductivity tensor co
ponents rather agree with the order of magnitude crudely
f

timated from their temperature dependence. These observ
tions allow to consider that this procedure could lead t
complementary tool in stress analysis: the variations of
thermal conductivity being actually linked with the stre
level, photothermal measurements could be a new kin
stress gauge.

Finally, it is important to note that, even if the resoluti
of this technique, in terms of detectable stress variation
not really high, it is to compare with the one of existi
methods: most of them are not really more accurate, and
others are intrusive or need a meticulous preparation.
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