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Abstract

The present work consists in the development of a three-dimensional model of heat diffusion in orthotropic media, based on numerical
Fourier transforms, and taking into account the extent of the source. This model has been applied, together with a Gauss—Newton paramete
estimation procedure, to identify the components of the conductivity tensor of a steel bar under uniaxial loading. Few percent variations of
the conductivity components have been observed for applied stresses remaining in the elastic domain.
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Most of the existing heat diffusion models have been plitude and phase maps of the response of an orthotropic
developed under homogeneoisotropic conditions. How-  medium, submitted to a moduat (non-uniform but also
ever, several applications require to take into account a pos-non-punctual) stimulation can be obtained in only a few
sible anisotropy of the thermophysical properties. Only a minutes.
few works (Degiovanni [1], Balageas [2], Pujola [3], Ama- This model has been validateth a comparison with a
zouz [4]) considering the anisotropy of the material have well-known model in an axisymetrical situation. Then it has
been realised up today, and they often consider a punctual olheen applied to the identification of the thermal conductivity
uniform source (see Ozisik [5] and references cited therein, tensor components in the case of a steel sample, submitted
but also Fournier et al. [6]). On the other hand, several works tg a uniaxial mechanical loading.
deal with the anisotropy of the thermal properties in compos-  various experimental devices have been found in the lit-
ite materials (Pan [7], Hadjov [8], Jezowski [9]), in single  erature: optical beam deflectiqMonzyk [15]), thermore-
crystals (Smontara [10], Gusakov [11], between others), or fiactance (Li [16]), pulsed heating (Fournier [6]) are the
in polymer films (Piraux [12], Newman [13]) butthe relation st ysed, and infrared thermography is sometimes chosen
between physica! properties and stress in common solid; has,s measurement tool of the thermal signal (Burleigh [17]).
been rarely studied (one can quote, for example, David et ppoiothermal thermography, under modulated laser stimu-
al. [14])'_ . lation at the front face of the sample, has been chose here:
. T_he aim of the present study is to propose a model tgk— series of images are recorded by a focal plane array cam-
ing into account both orthotropy of the thermal co.nductlv— era, and experimental amplitude and phase maps are ob-
ity tensor and ext_ent of th? modul_ated source. This model, tained thanks to a lock-in procedure. The three-dimensional
based on numgrlcal spatial Fourier transforms,_t_a}kes ad_model, together with a Gauss—Newton parameter estimation
vantage of the increase of the computers capabilties: am_procedure, allows the identification of the conductivity ten-

sor components parallel and perpendicular to the loading. Fi-
~* Corresponding author, Fax: +33-3-26-91-32-50. nally, a Student's test gives confidence intervals to the iden-
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Nomenclature

C specificheat .................... kg tK-1L Greek letters
E Young modulus ...l EPa a linear expansion coefficient ............. K
1 radiative flux. ... \W B absorption coefficient. ... ............... “h
ho, hp heat transfer coeffient at the front/rear ¢ strain tensor
face ...l Wi—2.K-1 i density of the layei ................ kgn—3
k*, kY, k* thermal conductivity v Poisson coefficient
COMPONENES ... ... wlk-1 log stresstensor...............oooiiiiian MRa
sample thickness ... ... ovvveeeoen m @ PUISAtION . .. ..ot 15
q volumic heatsource ................. V-3 Operators and notations
ro laser beamradiusayd................... m X; guantity corresponding to the layer
t time ... s X’ component of the& quantity parallel to the
T, Tamb Tr t€MpPerature............c..oeeeeennnn.. K | surface _ .
x,y  space coordinates, in the plane of the sample X component of the&X quantity perpendicular to
SUMACE ..ot m _ the surface _
. X one-dimensional Fourier transform of the
z space coordinate, normal to the surface of the .
| _ functionX
Samp e .. .. ............ e m X tWO-dImenSIOﬂal FOUrIer transform Of the
u,v Fourier variables associated to the space function X
coordinatess, y ..., m o~ tensor superscriptz; 6: strain and stress tensorg
R reflection coefficient {},[1 vectorand square matrices
1. Experimental set-up connected to a Data Acquisition Card synchronised with the

camera (Fig. 2).

An infrared thermography equipment (CEDIP IRC 320-
4L W) is used to measure the temperature rise at the front
surface of a steel bar, simultaneously submitted to a static _
uniaxial mechanical loading and to the irradiation of a | Argon-ion laser a , S {

modulated laser beam. The optical device is presented on
Fig. 1.

The infrared camera records series of images of the front-
face of the sample; then phased amplitude images of the
complex temperature pattern are obtained by a homemade
numerical lock-in procedure [18,19]. In order to obtain
the absolute phase shift between the optical stimulation
and the thermal response, a reference signal is recordec
simultaneously to the images by means of a photodiode 1

1

Photodiode

Acousto-optic
shifter

Sample under
uniaxial loading

Fig. 2. Principle of the lock-in detéon, with an optical reference obtain
Fig. 1. Experimental set-up. via a photodiode.
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2. Three-dimensional thermal modelling Then, a Fourier transform on thedirection, leads to:

2.1. Development of the model —kj“4yr2u2T,- _ k?4712v2T,- +E - 21 — jopiCiT,
<
The present problem is to be solved in Cartesian co-

= 1L
=—gq! - 7
ordinates. Since the samples are covered with black paint 9 (. 0)qi" (@) )

(in order to homogenize and enhance their emissivity), & where X is the two-dimensional Fourier transform of the

multi-layer model is necessary; in order to remain as generalfynction X and v is the Fourier variable associated to the
as possible, we consider hepelayers. If the conductivity  gpace variable.

tensor components do not deykon the position but only on Let
the direction (orthotropic homogeneous medium), the heat . e
equation in each layer can be written: 02 = —Lan?2,2 4 Tigg2,2 4 jwp" Ci
I K k*
T 0Ty 9Ty 0T; ’ .l . ’
—k; oz k; 02 k; az2 +piC; o7 the heat conduction equation can be resumed as follows:
— ey W T om0 L g
wherek?, k!’ andk? are the conductivity componenis, the 972 poem ki
density,C; the specific heat ant;, the temperature of the and has to be solved for the remaining spatial variable

layeri, andg; the heat source in the layer

Under sinusoidal excitation, the time dependence of the
source can be expressed as a complex exponential function
so that:

(depth).

2.1.2. Resolution of the radiative transfer equation along
the depth of the material
gy, 2,0 =qi(x, y,2)(1+ e.iwt) 2) On the one hand, the general solutions of the associated

_ _ homogeneous equation can be written as:
where w is the pulsation; the temperature can then be

expressed as a sum of three terms: Ti(u, v, 7) = A;je~ %% + B;efF 9)

Tii(x,y,2,1) = Tiamb+ Tic(x, v, 2) + T; (x, y, 2)e/®" (3) On the other hand, a particular solution, similar to the source
term, has to be found (cf. [20] and [21]). In the case of a

where Tiamb, Tic and T; are, respectively, the ambient femi—transparent non-scattering medium, one can consider,

temperature, the continuous temperature, and the thermal ', layei, two radiative fluxes{f andll.+, respectively

amplitude of the layef. 4:(x, y, 2) is the spatial profile of transmitted and reflected relatively fg (see Fig. 3). These

t_he sourcs, which can be separated in two components: theﬂuxes must check the equation of radiative transfer in the
first oneg;’(x, y) parallel to the surface and the second one two particular directions of the system (towatgand—z);

ql-L(z) perpendicular (depth profile of the source):

. a1 (2) N
qi(x, y,2) = qf (x, »)gi"(2) @ 5, TALT@=0 and
Finally, the heat equation for the alternative component can 91 (z) B
: . ——— —BI (z)=0 (20)
be written as follows: 9z il
" 92T; e 92T, i 92T, T, The solutions of these equations can be written as:
? . N — Jwp;iCil;
4 P 2 9 2 Ly 2
o Y yl ¢ Il.+(z) =PeP* and I7(2) = M;ePi (12)
=—q; (x,y)q; (2) 5) L
Then, the radiative source can be expressed as the
2.1.1. Fourier transforms in the plane parallel to the divergence of the net radiative flux:
surface
A first Fourier transform on the direction, applied to the
heat equation as expressed before, leads to:
_ azf 32_' _ Iy 11‘(02 I ()] I (112 L) | L () I, (L)
—kF AP 4 k]~ + ki~ — jopiCiT; T o
ay 0z 1;°(0) L) | Ay () | T (l) I,(L)
= —q] (. y)g;"(2) (6) .
where X is the one-dimensional Fourier transform of the 0 L I 3

function X, andu is the Fourier variable associated to the
space variable. Fig. 3. Radiative fluxes in each layer.
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gt () = —i(];r —I7)= ,gi(pie*ﬁfz + Ml.eﬁﬂ) (12) And the general depth-profile of temperature, expressed in
Z

9 the Fourier space, is:
The coefficientsP; and M; can be determinedia the _
radiative boundary conditions: Ti(u, v, 2)
atz=0: I (0) — Rol; (0) = Io(1— Ro) = (Aie™" + B;e”* — Eie % — FieP*)q]'(u,v)  (19)
atz=Il —Rul () +1; (1) — 1—R)I, (1) =0 As far as theP; and M; coefficients have been determined
and —(1—RyI () + IF (11) — R1l, (1) =0 previously, theE; and F; are easily determined. Then, for

each layer, theA; and B; are to be determinedgia the
: conductive boundary conditions:
atz=1: —rltU)+17U) — (1= R)I (1) =0 At the front face(z = 0):

and —(L= RO () + I 1 (1) — Ril 34U =0 g oT| O
: 19z =0 0
atz=L: —R,,I;(L) +1,(L)=0 (13) At each interface((p — 1) relations of this kind):
Globally, (2p) boundary conditions are to be written, lead- _kiz& = k% 0Tit1
ing to (2p) equations. As far as 2 coefficients are to be de- 9z lz=l; 0z L=

termined for each layer, the resulting 2oefficients can be  And ((p — 1) relations of this kind):
readily calculated.

The system is expressed in matrix form, with: Ti(li) = Tia(li)
P At the rear face{=L):
o (1= Ro)Io _
l =
i : d (1 ° 1) kO —mTw
Mi - N an { }_ ( ) )4 aZ =L =L
A]/JIP 0 These boundary conditions lead to the following system:
p
. - kZ ho)A1 — (ko1 — ho)B
SO that:[X]{A’;i} = {1}, and the coefficient®; and M; are ( 101t 0)A1— ( 171 0) B1
completely determined after inversion of the matrix: = (ho+ kiB1) E1+ (ho — kp1) F1
N . kiZUiAie_Uili _ kai BieUili _ kf;_10i+1Ai+l€_0’+ll"
! = - .
{ M; } =[X]"{I} (15) + kiz'+10—i+lBi+1eai+ll'

_ ) _ _ = k,'Z,Bi Eie_ﬁili — klzﬁ, Fieﬁili - k_z'+1,3i+1Ei+1e_ﬁi+1li
2.1.3. Resolution of the heat diffusion equation along the . '
: C B 1 Fooq Pl 1,2 -1 (20
depth of the material + ki PivrFivie ie{l2...p—1

Now, a particular solution of the equation can be written: | Aje ™% + B;e% i — A;1e~ %1l — B;qe%+1i
= Eje Pili 4 FiePili — E,e=Pirali

Ti(u.v.2) = Di(u. v)[ Pie™ % + MieP ] w,v) ~ (16) — Fipaefil ie(1,2,...,p—1)

so that the equation for the particular solution is: (kiop —hp)e vt A, — (Kap +hp)e’?" By,
= = —opL »L
BT — 0T, = (k2Bp —hL)e P E, — (K2 By + hi)e"r F,
_ B (Pl_e_,g,.z n Mieﬁfz)cﬁ(u, v) (17) that can also be written in matrix form:

2 N
; (M]] .t ={S}
The factor 2 takes into account the mean value of the B;

sinusoidal source.
Then, the value oD; is obviously:

(21)

where [M] is the 2» x 2p matrix of the coefficients (in
terms ofk;, Bi, o;, u, v andh) and{S} is a vector matrix

o Bi issued from the source elements (functionsFpfand F;),
' Zkf(ﬂl? — al?) and composed with the terms of the right members of the
system.

Finally, the particular solution is: The A; and B; coefficients are finally obtained by

T (v, 2) Z_Zkz(ﬂfzi : (Pie_ﬁ,.z_’_Mie,giZ)C?(u’v) inversion of the matrix/:
5 cf— 0o A B
b gl {BT }=[M1 1) (22)
= [~Eie™ P — FieP*]q] (u, v) (18) !



H. Pron, C. Bissieux / International Journal

2.1.4. Inverse Fourier transforms
In the case of a laser excitation, the radial profile of the
source is gaussian and expressed as:
_ 6202
3

g/ (x,y)=e (23)
The double Fourier transform of this source is gaussian:
4] (4, ) = VT roe B (24)

And the complete expression of the complex bi-dimensional
Fourier transform of the temperature distribution is:

]Ti(u7 v’ Z)
= (Aie™ 7% + B;je%* — Eje it — FiePiv)
X /T roe_”zrg("z"’vz) (25)

The last step consists in a double inverse Fourier transform,
and finally the complex temperature distribution is:

Ti(x,y,2) = TF_l[(Aie_""Z + B;je%t — Eje Pit — Fieﬁ"z)

2,2(,2.4 2
X /7 rge T oW Y )] (26)

Amplitude (°C)

o
v positions 150

(1 pixel = 30pm)

X positions
¥ (1 pixel = 30um)

b=k, =k =30

ks
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2.2. Influence of the conductivity tensor orthotropy on the
amplitude and phase maps

The direct model has been ghiminary validated by
comparison with an axisymetrical one [20], under identical
conditions. Then, its sensibility to the principal components
of the conductivity tensor has been studied. Figs. 4 and 5
show that the differences between the maps are very slight,
even if the variation of the conductivity tensor components
is wide (50% in this case). On that account, an efficient
estimation procedure is necessary to identify, from such
maps, the corresponding variations of the conductivity
tensor components. However, it is possible to note that the
phase maps are slightly more sensible to these variations
than the amplitude ones.

In the experimental work presented hereafter, owing
to calculation limitations, only two perpendicular phase
profiles across the laser beam, corresponding to the direction
parallel to the loading and to the direction perpendicular to
it, have been considered.

Amplitude (°C)

y positions
(1 pixel = 30pum)

Fig. 4. Influence of the orthotropic conductivity on the amplitude maps.

Phase (degrees)

L. 1o
y positions

(1 pixel = 30um)

/50 x positions

150 y
8 (1 pixel = 30pm)

koo

ke =k, =k =30

ks

Phase (degrees)

L. 100 50
y positions
(1 pixel = 30pum)

X positions

180 ¥ (1 pixel = 30um)

oo

=20;k,=k =40

Fig. 5. Influence of the orthotropic conductivity on the phase maps.
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Fig. 6. Phase relative sensitivity to the conductivity tensor components
alongx andy axis.

The use of only two perpendicular profiles could seem

to be a waste of data, since the whole amplitude and phaseN‘“ =
maps are available: only 400 measurements are taken into

account though 40000 are stored during the experiment.
However, one can note that, under these conditions, the

of Thermal Sciences 43 (2004) 1161-1169

The expected variations of the thermal conductivity tensor
components can be estimated through their dependence on
the temperaturgia the Hooke—Duhamel law. Actually, the
variations of the thermophysical properties, like those of
any observable property, can be expressed as a function of
the partial derivatives relative to each state variable of the
system. The state variables involved here are the strain tensor
and the temperature.

For a tensorial quantity like thermal conductivity, the
calculation must be carried out for each component:

okij okij
dk;j = ( f) dr + Z(—f) dey;
e T, eep

aT o 0ex]

Starting from an isotropic state to another, the variations of
the thermal conductivity components in the main directions
ok

<8T >£AT+Z<

> Ekk
kk T, e#ekk

) 42 (), Lo

(29)

ok;;
0kk

ok;i
aT

ok;;
0&kk

(30)

gaussian profile of the laser beam is over-sampled so that

the two profiles used contain enough information to allow
the identification of the researched parameters.

Consequently, in case of a smaller source point (focused
laser beam, for example), the same procedure could be
applied, but using the whole map in order to compensate the
worse sampling of the source; this allows us to consider that
the technique has not yet reached its limits in terms of spatial
resolution.

The sensitivity of these phase profiles to theandk,
components of the thermal conductivity tensor has been
studied. The results are presented on Fig. 6: as far a
the sensitivity profiles are dpe different according to the
considered direction, it seems to be possible to separate th
influence of the two components of the conductivity tensor
in the plane of the surface.

S

t

{

In fact, the thermal expansion coefficieat becomes a
tensor; however its variations remain small and are neglected
here.

However, the variation of a given conductivity component
must be distinguished, either the strain componentis parallel
or perpendicular to the conductivity component.

The measured variation of the conductivity as a function

of the temperature is not sufficient to evaluate all the partial
derivatives, giving only the sum of the derivatives along the

parallel and the two perpendicular directions together with
hat relative to the temperature.

Ak
EFEkk

AT ) experimental

ok;;
T
eF£¢ii

88,’,‘

ok;;
0ekk

ok
oT

(31)

).

Nevertheless, the last term seems particularly difficult to be

3. Application to stress-induced thermal anisotropy

measured. Indeed, the sample would be supposed to heat

without any volume expansion.

3.1. Expected variations of the conductivity tensor
components

In the case of a uniaxial stress, and without any temper-

ature influence, the variations of the principal components

are:

As far as the considered applied stresses are uniaxial, the

strain tensot can be expressed as follows: Ak11= g % —v % —v &11
E|\de1nn deoo 0e33
% 0 0 o[ [dk11 0k11
e=| 0 —vg 0 (27) =— <—> —Zv(—)} (32)
0 0 e E|\de1n 0€22
E
L : o | 9k k22 k22
The “thermal” main directions being the same as the Ak2= Akzz= 2150 ) 755, )~ 5
“mechanical’ ones, the conductivity tensor can thus be i} " 1 o 22 3
written: =Zla- ,,)<_22) _ v(ﬁ)} (33)
ki 0 0 kk 0 0 El 9e11 de22
k=] 0 k» 0 =10 & 0 (28) Only conductivity components measurements could allow
0 0 kaz=kp 0 0 k =k the evaluation of all the partial derivatives. However, in order
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to get at least an order of magnitude, the cross derivatives are _
Amplitude (A.U )
neglected here.
Then, for a carbon steelE(= 200 GPa,y =03, ¢ = 0"
12 x 1078, 1/k(3k/dT) = —10-3 K1, see Rouby and 480
Blanchard [22]) under a 100 MPa uniaxial stress, the 4000 '
variations of the conductivity components would be: 3200
0 [
Ak 1 (1 Ak 40
SHo S (222) x~—42% 200
kin — «E\k AT ) gy 16
800
k being an arbitrary component, and _ _
Ak Ak
=2 S N 13% 7
k22 1 X positions ~= . == ypositions
However crude, these estimations lead us to expect few (1pixel =30pm) ~ ~=7 "= (1 pixel =30um)
percent variations of the principal conductivity components @)

for stress levels remaining within the elastic domain. One
can also note that these estimations concern one kind of steel

and only one. Actually, the behaviour of a stainless steel Fanse{degreos)
is often very different from that of a carbon stegk/oT 0 | P
is often positive for the first and negative for the second. F— N
Not only the amplitude but also the sign of the conductivity 60 1
variations widely depend on the considered material. 420 L _H \
Moreover, for a given kind of material, the purity has 180 | e
a great influence. Finally, these estimations only allow to 240 f N
expecta priori the order of magnitude for the sensitivity of i 00 ] ==
the experimental device. -1 &
A similar estimation would lead to one order of magni- - ==
tude lower relative variationef the specific heat (Pron et - =
al. [23)); this estimation is coherent with those found in the X positions  ~T = =i
literature (see, for example, Dunn et Sparrow [24], Bridg- (1 pixel =30pm)  ~5= Zp> (Lipiel=a0i)
man [25]). Thus, specific heat is considered as constant in )

the present work.
Fig. 7. (a) Amplitude image across the laser beam; (b) Phase image across

3.2. Experimental results the laser beam.

Position (1 pixel=30um)
T 1

The lock-in procedure gives amplitude and phase images 0 %
as presented in Fig. 7(a) and (b). One can note that the noise _4 10 . 30 40 50
is really low; this is due both to the high efficiency of our

home-made lock-in proceduradto the high performance

)
o

hift (degrees)

of the FPA camera. -30

Two profiles across the laser beam (one parallel to 2
the stress, the other along the perpendicular direction) are 2 -40
extracted from the experimental phase maps. Then, the& _50 ing
identification of the parallel and perpendicular components 60 loading
of the conductivity tensok;1 andks; is realised by fitting ) ‘\“é
these profiles with the specially developed 3D heat diffusion  -70

model.

Fig. 8 shows how slight the differences between phase
profiles without and with loading are, observation that is
coherent with the expected variations.

Fig. 9 presents the variation of the parallel and perpen- Fig. 10 allows to state positively that our procedure
dicular components of the thermal conductivity for a steel is efficient since there is a good agreement between the
bar under an uniaxial loading remaining in the elastic do- experimental phase profiles and the profiles rebuilt with the
main. The confidence intervals are evaluated by means ofidentified components of the thermal conductivity tensor.
a Student's test (Beck and Arnold [26], Giri [27] or Mar- Moreover, the procedure is able to adjust the profiles even
quardt [28]), with a risk of 10%. if they are affected by a slight irregularity of the laser shape.

Fig. 8. Variation of a phase profile asfunction of the applied stress (AlSI
04).
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Fig. 9. Evolution of the thermal conductivity components as a function of
uniaxial applied stress.
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Fig. 10. Adjustment of ther and y experimental phase profiles by the
theoretical 3D model.

4. Conclusions

Photothermal infrared thermography is applied here to
estimate the variations of the thermal conductivity tensor

components induced by a static uniaxial loading on a steel

sample.

A specific three-dimensional model, based on numerical
Fourier transforms, and taking into account both the stress-

induced orthotropy of the medium and the extent of the

source has been developed. On the experimental point of
view, a specific device has been realised, allowing the

application of a static uniaxial loading and, simultaneously,

the irradiation of the surface by a modulated laser beam.

Series of images have beencorded thanks to a focal
plane array infrared camera,cexperimental amplitude and

phase maps are obtained thanks to a home-made lock-in

procedure. After a validation of this modga a comparison,

in an axisymetrical situation, with a well-known model,
it has been applied, togetheith a parameter estimation
procedure, to identify the conductivity tensor components in

the directions parallel and perpendicular to the mechanical

loading.

H. Pron, C. Bissieux / International Journal of Thermal Sciences 43 (2004) 1161-1169

timated from their temperatureegendence. These observa-
tions allow to consider that this procedure could lead to a
complementary tool in stress analysis: the variations of the
thermal conductivity being actually linked with the stress
level, photothermal measurements could be a new kind of
stress gauge.

Finally, it is important to note that, even if the resolution
of this technique, in terms of detectable stress variations, is
not really high, it is to compare with the one of existing
methods: most of them are not really more accurate, and the
others are intrusive or need a meticulous preparation.
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